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Abstract— Diffusion of a solute in a laminar film of an Eyring liquid down a vertical plate is considered.
The Taylor diffusion coefficient for this film increases with the model parameter.

NOMENCLATURE
a, radius of the pipe;
A, B, Eyring model parameter;
C, concentration of the solute;
D molecular diffusion coefficient;

D*,  Taylor diffusion coefficient;
d, thickness of the film;
E, constant defined by (8);

g, acceleration due to gravity;

G, dimensionless Eyring model parameter
defined by equation (6);

t, time;

u(y), velocity distribution in the flow;

U, average velocity.

Greek symbols

&, non-dimensional axial co-ordinate axis
(x-Utyd,

n, non-dimensional transverse co-ordinate axis
y/d;

T, non-dimensional time Dt/d?;

P, density;

U, coefficient of viscosity;

% dimensionless velocity defined by (6);
A1, constant defined by (6).

INTRODUCTION

THE DISPERSION of a solute in a viscous liquid flowing
in a circular pipe under laminar conditions was investi-
gated by Taylor [1,2]. It turns out that relative to a
plane moving with the mean speed of the B}’low, the
solute is dispersed (subject to certain limitations) with
an apparent diffusion coefficient a?v2/48D, where a, v,
and D are the radius of the pipe, the average velocity
and the molecular diffusion coefficient respectively.
Aris [3] extended Taylor’s analysis and presented a
more detailed treatment of the flow after removing the
restrictions imposed by Taylor. Recently Prenosil [4]
studied the dispersion of a solute in a laminar falling
film of a viscous liquid. This analysis has some bearing
on the treatment of the residence time distribution of
such a film. It may also be noted that the phenomenon
of dispersion in liquid films is encountered in such
processes as absorption, humidification, evaporation
and extraction.

The flow characteristics of thin films of non-
Newtonian power law fluids down a vertical plate
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were examined by Sylvester et al. [5]. However, the
phenomenon of diffusion in a falling film of non-
Newtonian liquids has not received much attention,
despite the fact that such liquids are of importance in
chemical industries. The object of the present paper is
to study the dispersion of a solute in a laminar falling
film of a non-Newtonian liquid obeying the Eyring
model [6]. The chief merits of this two-parameter
model are that it is derivable from the kinetic theory
of liquids and that it predicts pseudoplastic behaviour
at finite values of the shear stress. Further, the con-
stitutive equation for an Eyring liquid reverts to that
for an ordinary Newtonian liquid when the shear stress
approaches zero.

DIFFUSION IN AN EYRING LIQUID

Consider the laminar unidirectional flow of a film
of an Eyring liquid down a vertical plate with X-axis
along the free surface of the film downwards and with
Y-axis normal and directed towards the plate. If u(y)
and t,, denote the velocity and shear stress at a point,
then according to the Eyring model [6],

du . Tay
—d—y— Bsmh(j), 1)

where 4 and B are the model parameters. It is easy
to see that (1) reverts to the constitutive equation for a
Newtonian liquid with coefficient of viscosity u as
A — o0 and B — oo such that

u = lim (A/B).

A—-o
B—x

The momentum equation for the liquid film of thick-
ness d is

pg =0, 2

where p and g denote the density of the liquid and the
acceleration due to gravity. The solution of (1) and (2)
satisfying the zero shear stress condition du/dy = 0 at
the free surface y = 0 and the no-slip condition u =0
attheplatey =dis

u= %g [cosh (ngd) - cosh (p_/g{z)J . (3)
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Introducing the average velocity U given by

1 d
U=, f u)dy, @
dJo
we may put u(y) in (3) as
u=Ull+xm], (5)
where
1 G cosh Gy pgd
=7 I~ = . f‘,’[d,
xe) 11{1 sinh G } G==r0 n=) .
4y =GeoshG—1, Uz%{msh@_sm(l;GJ.

The concentration C of the solute diffusing in the film
satisfies

5C
€ _pvrie—v+pE, 7
ot éx

where D is the molecular diffusivity (assumed constant).

Considering a frame of reference with origin moving
with the mean velocity of the film we introduce the
following dimensionless quantities

poXzUL L B U (8)
d d4? D
Use of (8) in (7) gives
oc  &C ac & A
T aE 7'5?‘*7;17 9

with the initial and the boundary conditions

C(&n,0) = Col& ) (10)

('}_C_ =0 at
on
Equation (11) represents zero mass flux at the free
surface and the plate.
Let us introduce C,{#, 7) the pth moment of the distri-
bution of the solute in the film through # at time ¢:

n=0and n=1. (1

e

&CEn,de. (12)

-

Cpln, 1) = j

We also introduce the pth moment m,{7) in the film
given by
*1
mp(t)=J Cpln. Dydn. (13)
0

Following the method similar to Aris, we have from

(9) and (12),
oc, &
—ﬁ—f: 6’72p+p(p_1)cp—2+EpXCp‘la (14)
subject to the initial and boundary conditions
CP(rI’ 0) = CP()(”)* (15)
ac,
—6’—7—-—0 at y=0 and L (16)

Averaging (14) over the film thickness, and using (13)
and (16), we get

1

a
-’-”—"=p(p—1)m,,-z+5pj 2Cpordy, (D)

ot 0
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with condition (15) transformed to

my(0) = my,. (18)

Solving (14) and (17) successively and using the initial
and boundary conditions (15}, (16) and (18), we have

Mo = constant, (19)

Coln,t) = 1+ Y, A, cosnmn-e~ ", (20)
1

EG*Z®  A,cosnn

By n . lwe_"znzt, 21
At Z1:(Gz+nz7cz)n21t2 ( L@

where the origin is selected in the initial plane of the

centre of gravity of the solute so that m,(0)=0.

Further, the constant in (19) may be taken unity

without loss of generality so that mg = 1 and

my(7) =

~1
A, = ZJ Co{n) cosnnndy,
4]

n=12,.... (22
Equation (19) merely expresses the fact that the total
quantity of the solute remains constant. Further, as
T - o0, equation (21} gives

EGZ @©

Ancosnm
myfoo) = — —i:‘ ; (GZ T nzxz)nznz ’

(23)
which is the ultimate position to which the centre of
gravity of the solute moves. It may be noted from (21)
that since dm,/dt — 0 as 7 — oo, the centre of gravity
of the solute ultimately moves with the mean speed of
the flow.
Now equation (14) gives for p = 1,
ac, 9y
= e+ ExC,.
ot on? + 2o
Substituting (20) in {24} and solving in terms of the
complementary function and the particular integral,
we have after using (15) and (16):

E|#* coshGp
Cilp. )= ——| = ———— |+ 1B
1. 7) );,L2 GsthJ+I ’

24

+ Z Bycosnmy e T HE Y ¢an)e”m, (25)
1 1

where ¢,(x) satisfies

Chn , pomrg, = A, 26
W""nnd)n——'x »COS 7L, (26)
subject to
do,
995 _0 at 4=0and 1. N
dn
In (25), the constants B, are given by
i
B, = 2J Cioln)cosnmndn, n=0,12,.... (28)
[}

To evaluate Bp, we substitute C,(#, 7) from (25) in (13)
with p =1 and make use of the condition m;{0) = 0.
This gives

0

-+ (t-g)-EXa

1

By
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Substituting (29) in (25) and taking the limit 7 — co,
we find

E 1 2 coshG
cinermes E[i- 20
Ay

G 2 GsinhG |

Now putting p = 2 in (17) and using my = 1 and the
expression for C;{y, ), we get after neglecting the terms
which tend to zero as 1 — o0

d 1
-ﬁ=2+2EJ' xCrdn
dr
2E 3
hG——coshG
~2+ AsthK%_*- )sm > O

1
—ZSinhG]' 3Y

Now the rate of change of variance V,, of the dis-
tribution of the solute about the moving origin is pro-
portional to

tlilg (dmy/dt).
Thus using © = tD/d? and (13), we have
dv,
2w e paD*
< D+D*, (32
where
U?d? 2
* ..
b " DisinhG K% ) sinh @
3coshG 1
76 ~2sinhG} 33

Substituting the value of U given by (6) in (33), we may
write D* as (B%d*/D)- F,(G) where

F\(G)= [(}%— )sinh2 G -—;?G-sinh 26—%}. (39)

We have computed F,(G) for various values of G in
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Table 1 shown below.

Table 1.

G Fy(G)

1.0 0.24163 x 1072
20 0.14253 x 107!
30 0.59581 x 107¢
40 0.23974

50 0.99740
100 0.24663 x 10*
15.0 0.12783 x 108

We thus see from (32) that the total diffusion coefficient
may be looked upon as the sum of the molecular
diffusion coefficient D and the effective Taylor diffusion
coefficient D*. Further, for a fixed value of B, D*
increases rapidly with increase in the model parameter
G. It may be shown from (34) that

lim Fi(G)=
G-0

and this may lead one to believe that the Taylor dif-
fusion coefficient for the falling film given by (33) tends
to zero in the viscous limit 4 —» 00, ie. G — 0. This
apparently contradicts the result of Prenosil. However,
this paradox may be resolved by recalling the fact that
the correct viscous limit is obtained by taking 4 — w0

(ie. G—>0) and B — oo subject to the condition that

Jim [B*F(G)] remains finite.

B0
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DIFFUSION DE TAYLOR DANS UN LIQUIDE NON NEWTONIEN TOMBANT EN FILM

Résumé—On considére la diffusion d’un soluté dans un film laminaire de liquide d’Eyring qui tombe le
long d'une plaque verticale. Le coefficient de diffusion selon Taylor croit avec le paramétre de modéle.

TAYLOR-DIFFUSION IN EINEM RIESELFILM EINER
NICHT-NEWTONSCHEN FLUSSIGKEIT

Zusammenfassung—Fiir einen in Lésung gehenden Stoff wird die Diffusion in einen laminaren Film einer
Eyring-Fliissigkeit an einer vertikalen Platte betrachtet. Der Taylor-Diffusionskoeffizient fiir diesen Film
nimmt mit den Modell-Parametern zu.

TEWJIOPOBCKAS IMOdY3UA CTEKAIOWEN IUIEHKH
HEHBIOTOHOBCKOW XUIKOCTH

AmmoTamms — PaccmatpuBaerca auddy3us pacTBOpeHHOro BellecTsa B JIAMHHAPHOM ILIeHKe
KUAKOCTH DHpHHra, crexaromeil ¢ sepTHKansHol nnactusel. C poctoM Ge3pazmepHOrO HHAEXca
peosornyeckolt monenu xo3dhdauuenT Teltnoposckoit anhdyIun ysenuMBacTCA Al JaHHOH IICHKH.



