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TAYLOR DIFFUSION IN A FALLING FILM OF A 
NON-NEWTONIAN LIQUID 
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Abstract-Diffusion of a solute in a laminar film of an Eyring liquid down a vertical plate is considered. 
The Taylor diffusion coefficient for this film increases with the model parameter. 
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NOMENCLATURE 

radius of the pipe; 
Eyring model parameter; 
concentration of the solute; 
molecular diffusion coefficient ; 
Taylor diffusion coefficient ; 
thickness of the film; 

constant defined by (8); 
acceleration due to gravity; 
dimensionless Eyring model parameter 
defined by equation (6); 
time; 
velocity distribution in the flow; 
average velocity. 

Greek symbols 

r, non-dimensional axial co-ordinate axis 
(x - Ut)/d; 

% non-dimensional transverse co-ordinate axis 

Yld; 
? non-dimensional time Dtfd’; 

P, density; 

K coefficient of viscosity; 

x9 dimensionless velocity defined by (6); 
i 1, constant defined by (6). 

INTRODUCTION 

THE DISPERSION of a solute in a viscous liquid flowing 
in a circular pipe under laminar conditions was investi- 
gated by Taylor [l, 21. It turns out that rel tive to a 
plane moving with the mean speed of the “k ow, the 
solute is dispersed (subject to certain limitations) with 
an apparent diffusion coefficient a2v$18D, where a, v, 
and D are the radius of the pipe, the average velocity 
and the molecular diffusion coefficient respectively. 
Aris [3] extended Taylor’s analysis and presented a 
more detailed treatment of the flow after removing the 
restrictions imposed by Taylor. Recently Prenosil [4] 
studied the dispersion of a solute in a laminar falling 
film of a viscous liquid. This analysis has some bearing 
on the treatment of the residence time distribution of 
such a film. It may also be noted that the phenomenon 
of dispersion in liquid films is encountered in such 
processes as absorption, humidification, evaporation 
and extraction. 

The flow characteristics of thin films of non- 
Newtonian power law fluids down a vertical plate 

were examined by Sylvester et al. [5]. However, the 
phenomenon of diffusion in a falling film of non- 
Newtonian liquids has not received much attention, 
despite the fact that such liquids are of importance in 
chemical industries. The object of the present paper is 
to study the dispersion of a solute in a laminar falling 
film of a non-Newtonian liquid obeying the Eyring 
model [6]. The chief merits of this two-parameter 
model are that it is derivable from the kinetic theory 
of liquids and that it predicts pseudoplastic behaviour 
at finite values of the shear stress. Further, the con- 
stitutive equation for an Eyring liquid reverts to that 
for an ordinary Newtonian liquid when the shear stress 
approaches zero. 

DIFFUSION IN AN EYRING LIQUID 

Consider the laminar unidirectional flow of a film 
of an Eyring liquid down a vertical plate with X-axis 
along the free surface of the fihn downwards and with 
Y-axis normal and directed towards the plate. If u(y) 
and zxy denote the velocity and shear stress at a point, 
then according to the Eyring model [6], 

where A and B are the model parameters. It is easy 
to see that (1) reverts to the constitutive equation for a 
Newtonian liquid with coefficient of viscosity p as 
A+co and B+co suchthat 

p = lim (A/B). 
A+CC 
BACC 

The momentum equation for the liquid film of thick- 
ness d is 

-dz,,+pg=O, 
dy 

where p and g denote the density of the liquid and the 
acceleration due to gravity. The solution of (1) and (2) 
satisfying the zero shear stress condition du/dy = 0 at 
the free surface y = 0 and the no-slip condition u = 0 
at the plate y = d is 
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introducing the average velocity U given by with condition (15) transformed to 

U = f 
s 

* z&)dy, (4) 
&O) = mpo* fl8, 

0 Solving (14) and (17) successively and using the initial 
we may put u(y) in (3) as and boundary conditions (151, (16) and (ES), we have 

u = u[l+x(a11~ (5) m. = constant, (1% 

where 

x(rl) == f l- 
G cash Gq 

’ 
1 1 sinhG 

G=f$; q=y/d, 

A1 = GcoshG-1, U =$ 
1 

sinh G 
coshG-- 

1 G . 

(6) ml(T) = -q 
Al, cos nn 

.(l-e-n’n2r), (21) 
1 I (G2 + n27c2)n27t2 

where the origin is selected in the initial plane of the 
The concentration C of the solute diffusing in the film centre of gravity of the solute so that ml(O) = 0. 
satisfies Further, the constant in (19) may be taken unity 

$ = VPC-(i(l+& 
without loss of generality so that m. = 1 and 

(71 c i 
A:, = 2 

? 
C,(r/)cosnx~d~, n = 1,2,. . . . (22) 

where D is the molecular diffusivity (assumed constant). 0 

Considering a frame of reference with origin moving Equation (19) merely expresses the fact that the total 
with the mean velocity of the film we introduce the quantity of the solute remains constant. Further, as 
following dimensionless quantities r -+ co, equation (21) gives 

Use of (8) in (7) gives 

de d2C r?c PC 

at - 252 -----Ex~+_~, 
,_ “‘1 

with the initial and the boundarv conditions 

which is the ultimate position to which the centre of 
gravity of the solute moves. It may be noted from (21) 

(9) that since dmJdz -+ 0 as z + co, the centre of gravity 
of the solute ultimately moves with the mean speed of 
the flow. 

(10) Now equation (14) gives for p = 1, 

ac 
-=0 at u=O and q=l. 
ar 

(11) 
dC1 a2c1 -= ----i_+E~Co. 
a7 aq 

Equation (11) represents zero mass &IX at the free Substituting (20) in (24) and solving in terms of the 
surface and the plate. complementary function and the particular integral, 

Let us introduce C&, z) the pth moment of the distri- we have after using (15) and (16): 
bution of the solute in the film through v at time t : 

i 

’ 1 
C&3 7) = t?ctt. r,7) di-. 

J - II 

We also introduce the pth moment m&) in the film 
+CB:,cosnn~~e 

I 1 
given by where $,,(q) satisfies 

J 
‘1 

mp(d = cph Wv. 
0 

Following the method similar to Aris, we have from 
(9) and ( 121, 

subject to 

X, PC, dA 
(27) 

X-= 2’12 -----+P(P--l)C,-2+~P)lC,-I, (14) 
-=0 at q=Oand 1. 
drl 

subject to the initial and boundary conditions In (25), the constants S:, are given by 

C,(% 0) = C,,,(v), (15) 
1 

B:, = 2 C,&)cos nnqdq, n = 0, 1,2,. . . . (28) 
ac 
-(=O at q=O and I. 

0 

a? 
(16) 

s 

To evaluate Bb, we substitute Cr(q, z) from (25) in (13) 
Averaging (14) over the film thickness, and using (13) with p = 1 and make use of the condition mi(0) = 0. 

and (16), we get This gives 

2 = P(P-l)nr,-z+Ep 
s 

I 
xc,- 1 dtl* (17) 

0 
(29) 
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Substituting (29) in (25) and taking the limit T -+ co, Table 1 shown below. 
we find Table 1. 

Now putting p = 2 in (17) and using m0 = 1 and the 
expression for Cl&, r), we get after neglecting the terms 
which tend to zero as 7 --f co : 

dw s 1 
ds = 2+2E xC~ dq 

0 

= 2+~[j~+~)sinhG-~colG 
1 

1 

-2sinhG. I 
(31) 

Now the rate of change of variance: V, of the dis- 
tribution of the solute about the moving origin is pro- 
portional to 

lim (dm,/dt). 
*+a0 

Thus using 7 = to/d2 and (I3), we have 

db 
--pD+D*, (32) 

D* = 
U2d2 

Da: sinh G 

3coshG 1 

-2G-- * 2 sinh G 1 (33) 

Substituting the value of U given by (6) in (33), we may 
write D* as (B2d4/D)~ F,(G) where 

F,(G) = $ sinh’G--&sinh2G-f 
1 

. (34) 

We have computed F,(G) for various values of G in 

G F](G) 

1.0 0.24163 x lo-’ 
2.0 0.14253 x lo-’ 
3.0 0.59581 x lo-’ 
4.0 0.23974 
5.0 0.99740 

10.0 0.24663 x lo4 
15.0 0.12783 x 10’ 

We thus see from (32) that the total diffusion coefficient 
may be looked upon as the sum of the molecular 
diffusion coefficient D and the effective Taylor diffusion 
coefficient D*. Further, for a fixed value of B, D* 

increases rapidly with increase in the model parameter 
G. It may be shown from (34) that 

lim F,(G) = 0 
G-O 

and this may lead one to believe that the Taylor dif- 
fusion coefficient for the falling film given by (33) tends 
to zero in the viscous limit A + co, i.e. G -+ 0. This 
apparently contradicts the result of Prenosil. However, 
this paradox may be resolved by recalling the fact that 
the correct viscous limit is obtained by taking A -+ CO 

(i.e. G + 0) and B -+ co subject to the condition that 
J$II [B’F,(G)] remains finite. 
B-m 

1. 

6. 
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DIFFUSION DE TAYLOR DANS UN LIQUIDE NON NEWTONIEN TOMBANT EN FILM 

R&wm&-On considtre la diffusion d’un solute dans un film laminaire de liquide d’Eyring qui tombe le 
long d’une plaque verticale. Le coefficient de diffusion selon Taylor croit avec le paramitre de modtle. 

TAYLOR”DrFFUSION IN EINEM RIESELFILM EINER 
NIGHT-NEWTONSCHEN FLGSSIGKEIT 

Zusammenfassung-Fiir einen in Lijsung gehenden Stoff wird die Diffusion in einen laminaren Film einer 
Eyring-Fliissigkeit an einer vertikalen Platte betrachtet. Der Taylor-Diffusionskoeffizient fiir diesen Film 

nimmt mit den Modell-Parametern zu. 

TE&JiOPOBCKAlf plHQ,azY3HR CTEKAK)aE& IIJIEHKH 
HEHbIOTOHOBCKOfi XHfiKOCl%i 

A=olXulud-- %CCMaTpHBWTCS ~44y3li~ PWTBOpeHHOrO BeLUeCTBa B JlaMAKapHOti lUleHUe 

xwuc0cr~ SpsiHra, cleraloiqefi c BepTmcanbHot rrnacTHHbr. C P~CTOM 6espa3Mepnoro ui.uewa 

peonor~rec~oi~o~e~~o~3~e~TTezlnoposc~o~~~~~y3~uy~e~~~~aeTc~An~~aqawao~nne~a. 


